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Modern approaches to vibrational relaxation in liquids have begun to move beyond the simple question of
how fast vibrational population relaxation occurs to the more challenging question of how it occurs at all:
the precise molecular mechanisms by which a solvent stimulates the loss of a vibrational quantum from a
solute. We report here some progress in understanding these mechanisms based on looking at the dynamics
of the initial triggering events in the vibrational relaxation seen in molecular fluids. With the aid of
instantaneous-normal-mode analysis we find a remarkable similarity between vibrational relaxation and the
dynamics of solvation. The key concept, in both cases, is that the polarity and general behavior of the solvent
is far less important in determining the relevant mechanism than is the particular force or potential monitored
by the relevant experiment (“the spectroscopic probe potential”). Vibrational population relaxation
automatically accesses the force on a bond, a quantity sufficiently similar to the Lennard-Jones part of the
solute-solvent potential that solvation probed by Lennard-Jones potentials ends up sensing a virtually identical
mechanism, regardless of the specifics of the liquids. We find that, in both cases, the events that trigger the
relaxation typically involve no more than a solvent molecule or two, independently of whether the system is
a dipolar solute dissolved in CH3CN or I2 dissolved in either liquid or supercritical CO2. The similarity even
extends to the precise spectra of active instantaneous normal modes of the liquid that govern the dynamics
for the two very different processes (the “influence spectra”). With a much longer ranged probe potential,
such as that found in dipolar solvation, the shape of the influence spectrum does become noticeably different,
but even for electrostatics-dominated examples we never find that more than four or five solvents are needed
to make up the bulk of the influence spectrum derived from any one liquid configuration. The collective
character of solute relaxation evidently does not come into play until times significantly longer than the
duration of the triggering events.

I. Introduction

That even the most straightforward of vibrational spec-
troscopies in liquids has the potential to reveal the intimate
details of vibrational dynamics has long been appreciated. The
broadening of what would otherwise be a sharp line carries
information about all of the static and dynamical features of
the vibration’s interaction with the surrounding liquid.1 Sepa-
rating out those individual features, however, requires more
sophisticated experimental probes. Techniques such as infra-
red2,3 and Raman echoes4,5 are now being used to measure how
much of the broadening of the absorption arises from solvent
motion occurring on time scales comparable to that of the
vibration (homogeneous broadening), how much can be thought
of as arising from the liquid features that change so slowly they
look essentially static (inhomogeneous broadening), and how
much falls in between these extremes. Within the realm of
homogeneous broadening, there is then the further issue of
whether the broadening can be attributed to the finite lifetime
of a vibrational excitation (T1), to the finite lifetime of vibrational
phase information within a given vibrational state (T2*), or to
both.6 Here too, information is rapidly becoming available.
Pump-probe measurements of the populations of specific

vibrational energy levels yieldT1 values directly,7-12 from which
one can deduce 1/T2*, the pure dephasing rate, just by taking
the difference between the total dephasing rate associated with
the homogeneous line width, 1/T2, and the rate arising from
vibrational energy relaxation, 1/(2T1).13

Having reached this juncture, however, it is important to
remember that the point of the whole analysis was not to
rationalize the broadening of infrared or Raman lines; it was to
understand the vibrations themselves. What one would really
like to know are the molecularmechanismsby which liquids
influence intramolecular dynamics. Simply knowing average
lifetimes, for example, constrains the possibilities, but it does
not tell us which kinds of motions by the solvent molecules are
most efficient in removing vibrational energy. Similarly, just
knowing that inhomogeneous broadening contributes a certain
fraction of the broadening is informative, but it does not do
much to address the question of how the most important solvent
dynamics can differ from liquid configuration to liquid config-
uration.
This notion of mechanism is one that has begun to receive a

certain amount of attention from both experiment and theory.
In a certain sense, the experiments11,14,15and theoretical studies16

that have traced the flow of vibrational energy from mode to
mode within molecules (and between molecules) have providedX Abstract published inAdVance ACS Abstracts,December 15, 1997.
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us with the first glimpses of mechanistic detail. More specific
information has also begun to become available from simulations
that test such matters as the relative efficiencies of electrostatic
and nonelectrostatic forces in promoting vibrational relaxation.17

However there is another, more targeted, theoretical route to
such mechanistic information, one that seems particularly well
adapted to ferreting out the microscopic origins of at least
vibrational population relaxation, that of instantaneous-normal-
mode analysis.18,19 It is this type of approach we wish to pursue
in this paper.
The idea behind this perspective is that for any instantaneous

configuration of a liquid, the potential surface immediately
surrounding the configuration is nearly harmonic, meaning that
it is sensible to imagine any motion taking place starting from
that configuration as being decomposable into (instantaneous)
harmonic modes. These modes (INMs) will change from
configuration to configuration, but at any instant they provide
a natural set of well-defined collective solvent motions; indeed
for short enough times, they providethenatural set of motions.
One can therefore analyze even relatively complicated aspects
of the short-time solvent dynamics by resolving the motion into
linear combinations of INMs.20-27 Moreover, because one
knows the specific molecular ingredients of each mode, it then
becomes possible to compute the average fraction of the
important dynamics governed by any proposed model of the
motion: that stemming from longitudinal, rather than transverse,
motion, say, or from nearby, rather than distant, solvents. Just
such a program has been carried out in the course of investigat-
ing the dynamics of solvation22,23 and, in a more preliminary
fashion, for vibrational relaxation.24,26

Beyond presenting this kind of averaged information, how-
ever, an instantaneous perspective obviously allows us to look
directly at the specific dynamics associated with specific liquid
configurations. Both solvation dynamics and vibrational re-
laxation have begun to be subjected to this, deeper, more
revealing, level of analysis.28 In the results to date, which have
been limited to studying the effects of relatively short-ranged
forces and to atomic solvents, almost all of the relaxation
dynamics affiliated with a given liquid configuration was found
to be attributable to the influence of the key INMs on one or
two critical solvent atoms, a finding strikingly reminiscent of
the venerable binary collision theory of vibrational relax-
ation.29,30 Perhaps as a direct result of this few-body dominance,
the average spectra of contributing modes in solvation and in
vibrational relaxation examples have been found to be strikingly
similar to each other in atomic fluids.28 Still unknown, though,
is the extent to which these observations will survive the
generalization to molecular solvents and to a wider range of
intermolecular interactions.
What we shall be concerned with in this paper is the

application of our linear instantaneous-normal-mode approach
to vibrational population relaxation under these more general
circumstances. In our previous work, we demonstrated that an
INM treatment of an atomic solvent, in combination with the
assumption that displacement of the solute vibration in question
is linearly coupled (coupled at the one-phonon level) to the
solvent, suffices to yield an instantaneous generalized Langevin
equation for the vibrating coordinate.25 This result, in turn,
provides us with the instantaneous friction the coordinate sees,
from which the desired relaxation dynamics follows easily. The
intrinsic limitations of the INM formalism preclude us from
examining the zero-frequency friction that we need to predict
1/T2*, the pure dephasing rate,31 but 1/T1, the vibrational
population relaxation rate, can be computed at the Landau-

Teller level just by evaluating the cosine transform of the INM
friction at the frequency of the vibration.6,7,17,32,33

In this paper we shall apply this formalism to vibrations of
diatomic molecules dissolved in two different molecular fluids,
one nondipolar, carbon dioxide, and the other manifestly polar,
acetonitrile. With molecular solvents we can certainly ask about
such explicitly molecular issues as the relative importance of
solvent center-of-mass translation and solvent libration, but more
importantly with these examples we can contrast the instanta-
neous dynamics of short-ranged repulsive interactions with that
generated when dispersion and electrostatic forces come into
play. We shall ascertain, in particular, what happens to the few-
body character of the instantaneous relaxation channels as the
range of interaction increases, and we shall ask how universal
the similarity is between solvation and vibrational relaxation.
The remainder of the paper is organized as follows: In section

II we review the linear INM formalism used in studying
vibrational and solvation relaxation, focusing on what we call
the influence spectra for these processes. We also review how
mechanistic information can be extracted from the exact time
evolution as revealed by molecular dynamics. In section III,
we summarize our calculational procedures and models, and in
section IV, we present our results, both for instantaneous and
averaged relaxation dynamics. We conclude in section V with
some general comments.

II. Formalism

A. Linear Instantaneous-Normal-Mode Treatments of
Vibrational Relaxation and Solvation Dynamics. Our basic
approach for treating liquid-state spectroscopy problems within
linearly coupled INM theory was first elaborated several years
ago.21 The formalism has since been applied to solvation
dynamics,22,23 to vibrational relaxation,24-26 and to infrared,
Raman, and optical Kerr effect spectroscopies,27 as well as to
some of the more general features of solute relaxation common
to the first two processes.28 During the course of these
applications we have had occasion to discuss in some depth
the assumptions, limitations, and levels of quantitative success
characteristic of this approach. We will therefore confine
ourselves here to recounting only enough of the results to be
able to define the crucial quantities.
The focus of the theory is the weighted spectrum of the INM

frequencies of the solution, what we have termed theinfluence
spectrumfor the process being considered. For any given liquid
configurationR, the spectrum is defined to be

where the sum is over all the instantaneous normal modes of
the given configurationR, the ωR are the frequencies of the
modes, and the coefficientscR represent the efficiency with
which each mode affects the microscopic dynamics behind the
spectroscopic observable. In particular, for pump-probe
measurements of vibrational population lifetimes (with the
observable being the populations of the vibrational states), the
microscopically interesting function ends up being the force
along the vibrating bond.25 For time-dependent fluorescence
studies of solvation dynamics,34 the observable is the time
evolution of the emission frequency, making the relevant
microscopic quantity the difference in the solute-solvent
interaction energy between ground- and electronically-excited-
state solute.22,23 More generally, if the microscopically pertinent
quantity is some function of the solute and solvent nuclear

FR(ω) ) ∑
R
cR

2δ(ω - ωR) (2.1)
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coordinates,A, then the coupling constant for theRth mode is

with qR the (mass-weighted) instantaneous-normal mode coor-
dinate for modeR.
These influence spectra are actually quite revealing in

themselves, but the simplest direct connections with spectros-
copy are through time correlation functions involving theA’s,
which we can calculate from theaVeragedinfluence spectra,

where the average is over the liquid configurationsR. The
spectroscopic “velocity” autocorrelation functions,

are particularly straightforward to obtain, inasmuch as they are
predicted to be simply the time-domain version of the averaged
influence spectra,21

For solvation dynamics, for example, these last equations mean
that we can compute the experimentally accessible energy-gap
correlation function itself just by taking a double-time integral
of the relevantG(t) function.22,23,30

For vibrational relaxation, we find the second derivative of
the vibrational frictionη(t) to be given by a similar expression:
24,25

Thus, if the interest is then in theT1 lifetime of a vibrating
diatomic with (solution-phase) frequencyω0 and reduced mass
µ, because we know that the cosine transform of this friction
determinesT1,

within Landau-Teller theory,6,7,17,32we can see from eq 2.6
that we should expect the desired relaxation rate to be
proportional to the averaged influence spectrum itself:35

All of these results depend, of course, on being able to
calculate the instantaneous normal modes of the solutions we
wish to study. These modes are obtained in this paper, as has
become standard, by using simulation to generate an equilibrium
distribution of liquid configurations and then constructing the
dynamical matrixsthe mass-weighted Hessian matrix of second
derivatives of the potential energysfor each of the resulting
configurations. With the rigid linear models of the solvents
and solutes we consider in this paper, these matrices end up
being 5(N + 1)× 5(N + 1), corresponding to the three center-
of-mass translations and the two spherical-polar orientational
angles associated with the single solute molecule and with each
of theN solvent molecules. The eigenvalues and eigenvectors
of the dynamical matrices then yield the necessary INM

frequencies and modes, respectively. Further details may be
found in refs 22 and 36.
B. Mechanistic Analysis. As noted by Steele,37 the velocity

form of time correlation functions proves to be a useful quantity
to contemplate even when we are not interested in INM
approaches. It is always possible to write time derivatives of
the dynamical variable of interest rigorously as a sum over
contributions from each coordinate of each molecule

wherej ) 0, ...,N labels the solute and theN solvent molecules
(respectively), the subscriptt indicates that the derivative is to
be evaluated with all of the coordinates at their timet values,
and the molecular coordinates are taken to beµ ) x, y, z, θ, φ
for our systems. The fullGAA(t) correlation function of eq 2.4
involves all of the terms in this sum forȦ(t), as well as all of
the terms forȦ(0), but one could imagine separating out any
subset of these coordinates for closer examination. For example,
we could partitionGAA(t) into rotational and translational
components by looking at

SinceȦ(t) ) Ȧrot(t) + Ȧtrans(t), we can write

where the purely rotational, purely translational, and cross
contributions are

An interesting, but slightly different, partitioning lets us think
about the distinction between thebinary dynamics (b) induced
by the motion of the solute and a single solvent molecule at a
time, and the remaining dynamics, which is intrinsicallyternary
(t) since it can be thought of as stemming from the simultaneous
motion of the solute and two different solvents. If, as in our
case, the spectroscopic probe functionA can be written as a
sum of pair potentials acting between the solute 0 and each of
the solvent moleculesj,

with Ω̂j the orientational unit vector of moleculej prescribed
by (θj,φj), then its time derivative neatly separates into a sum
of terms associated with the motion of each solvent molecule
in concert with the solute.

cR ) ∂A/∂qR (2.2)

FA(ω) ) 〈FR(ω)〉 (2.3)

GAA(t) ) 〈Ȧ(0)Ȧ(t)〉 ) - d2

dt2
〈A(0)A(t)〉 (2.4)

GAA(t) ) (kBT)∫ dω FA(ω) cos(ωt) (2.5)

d2

dt2
η(t) ) -∫dω Fvib(ω) cos(ωt) (2.6)

1/ T1 ) µ-1ηR(ω0) (2.7)

ηR(ω0) )∫0∞ dt cos(ωt) η(t) (2.8)

ηR(ω) ) (π/2)ω-2Fvib(ω) (2.9)

Ȧ(t) ) ∑
jµ

(∂A/∂rj)t r̆ jµ(t) (2.10)

Ȧrot(t) ) ∑
j

∑
µ)θ,φ

(∂A/∂rjµ)t r̆ jµ(t)

Ȧtrans(t) ) ∑
j

∑
µ)x,y,z

(∂A/∂rjµ)t r̆ jµ(t)

GAA(t) ) GAA
rot(t) + GAA

trans(t) + GAA
cross(t) (2.11)

GAA
rot(t) ) GȦrotȦrot(t), GAA

trans(t) ) GȦtransȦtrans(t)

GAA
cross(t) ) GȦrotȦtrans(t) + GȦtransȦrot(t)

A) ∑
j)1

N

w0j, w0j ) w(r0j,Ω̂0,Ω̂j) (2.12)

Ȧ(t) ) ∑
j)1

N

∆Ȧj(t)

∆Aj(t) ) ∑
µ

[(∂w0j/∂rjµ)t r̆ jµ(t) + (∂w0j/∂r0µ)t r̆ jµ(t)] (2.13)
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The velocity form of the correlation function can therefore be
dissected into the desired binary and ternary pieces:

The ordinary (nonvelocity version of the) time correlation
function 〈A(0) A(t)〉 can, of course, also be divided into one-
and two-solvent portions, but it is worth emphasizing that such
an approach may not serve to partition the correlation function
into contributions from differentmotions, that is, into different
velocities,drjµ/dt. Indeed, at short times the apparent distinction
between these binary and ternary terms reflects little more than
the existence of separate binary and ternary contributions to
the zero time value,

a separation which arises as a consequence of the equilibrium
liquid structure and has no direct implications for the dynamical
mechanism.
The usefulness of a velocity-based analysis is emphasized

even more in linear INM treatments, which effectively replace
the generalized forces (∂A/∂rjµ)t evaluated along the exact
trajectory,R(t), with their instantaneous (t ) 0) counterparts.21

In this approximationswhich is exact at short enough timessall
of the dynamics resides in ther̆ jµ(t)’s, meaning that all of the
mechanistic analysis that we carry out revolves around these
velocities. The outcomes of these kinds of INM investigations
have usually been reported in the frequency domain as projec-
tions of the averaged INM influence spectra, eqs 2.1 and 2.3,
but the ideas are basically the same as what we have been
discussing. For discriminating between rotational and transla-
tional contributions, for example,22,23 we have shown that the
influence spectra should be partitioned as

with the projected coefficients (defined from eq 2.2)

bringing in the instantaneous generalized forces and the INM
eigenvectors. From eq 2.5, then, the INM time-domain

equivalents are

and similarly for the translational and cross-correlation functions.
Thus, with the aid of such projections we can use INM theory
to get at either frequency- or time-domain pictures of the
mechanisms of solute relaxation.

III. Models and Computational Details

We present here the results for two model dilute solutions,
one representing I2 dissolved in CO2 and the other mimicking
a dipolar diatom with bromine-like Lennard-Jones (LJ) potential
parameters and a bromine-like bond length dissolved in aceto-
nitrile. For simulation purposes, the solute and solvent mol-
ecules are always assumed to be rigid, with bond lengths and
angles fixed at their isolated-molecule equilibrium values. The
intermolecular potentials that we use are sums of LJ+ Coulomb
site-site terms. For a pair of sitesa and b on different
molecules they are given by

whereεa andσa are the LJ well depth and diameter of sitea
andQa is its partial charge. As eq 3.1 indicates, Lorentz-
Berthelot combining rules38 are used to determine the LJ
potential parameters for pairs of unlike sites. For acetonitrile,
we use the Edwards et al.39 potential in which the methyl group
is a single interaction site, making the molecule effectively
linear. For CO2, we use the five-site potential we developed,23

based on the LJ parameters given by Murthy et al.40 and on
five partial charges chosen to give the three lowest permanent
moments determined by Stone and Alderton.41 The solute LJ
potential parameters are taken from Rappe´ el al.42 For I2, the
three partial charges were chosen to give the calculated value
(5.57 D Å)43 of the molecular quadrupole. The dipolar “Br2”
is constructed with two partial charges, giving it a dipole
moment of 5.47 D. The potential parameters and molecular
geometries for the dipolar “Br2”-acetonitrile system are sum-
marized in Table 1 of ref 22, and those for the I2-CO2 system
are reported in Table 2 of ref 23.
In the case of the I2-CO2 system, we simulated three

thermodynamic states, one at 220 K and 1.128 g/cm3, corre-
sponding to the liquid near its triple point,44,45 and two others
in the supercritical fluid state.46 Both of these supercritical
simulations were carried out at 320 K, but one of them was at
the critical densityFc of 0.467 g/cm3 and the other at 2.5 times
this density. The dipolar “Br2”-CH3CN system was simulated
at conditions corresponding to the liquid at room temperature
and atmospheric pressure, 293 K and 0.7867 g/cm3. As in our
previous work,22,23 the molecular dynamics (MD) simulations
were carried out in the microcanonical ensemble, and Ewald
sums with conducting boundary conditions were employed for
Coulombic interactions.38 In the case of the I2-CO2 system,
the equations of motion were integrated using time steps of 6
fs for the liquid state and 5 fs for the supercritical states. Time
steps of 8 fs were used for the dipolar “Br2”-CH3CN system.
Further details of the simulation technique and of the subsequent
calculation of the INM eigenvectors and eigenvalues can be
found in ref 22.
All the INM results that we present were obtained for systems

containing one solute and 107 solvent molecules. To ascertain

G(t)) Gb(t) + Gt(t)

Gb(t) ) ∑
j)1

N

〈∆Ȧj(0)∆Ȧj(t)〉

Gt(t) ) ∑
j,k)1
(j*k)

N

〈∆Ȧj(0)∆Ȧk(t)〉 (2.14)

〈A(0)A(0)〉 ) ∑
j)1

N

〈w0j(0)w0j(0)〉 + ∑
j,k)1
(j*k)

N

〈w0j(0)w0k(0)〉

FA(ω) ) FA
rot(ω) + FA

trans(ω) + FA
cross(ω)

FA
rot(ω) ) 〈∑

R
(cR
rot)2δ(ω - ωR)〉

FA
trans(ω) ) 〈∑

R
(cR
trans)2δ(ω - ωR)〉

FA
cross(ω) ) 〈2∑

R
(cR
rot)2(cR

trans)δ(ω - ωR)〉 (2.15)

cR
rot ) ∑

j
∑

µ)θ,φ

(∂A/∂rjµ)0 (∂rjµ/∂qR)

cR
trans) ∑

j
∑

µ)x,y,z
(∂A/∂rjµ)0 (∂rjµ/∂qR) (2.16)

GAA
rot(t) ) (kBT)∫ dω FA

rot(ω) cos(ωt) (2.17)

uab(r) ) 4(εaεb)
1/2{(σa + σb

2r )12 - (σa + σb

2r )6} +
QaQb

4πε0r

(3.1)
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that systems of this size are sufficiently large to give results
representative of macroscopic solution samples, we also carried
out MD simulations of one solute-255 solvent systems.
Comparison ofη(t), Gvib(t), andGsolv(t) obtained from MD
trajectory data for 108- and 256-molecule systems showed no
significant system size effects, even in the case with the longest
range interactions, dipolar “Br2”-CH3CN. For this system we
have also studied the system size dependence of the INM
influence spectra for electrostatic solvation. The results are
shown in Figure 1. The small differences that are seen between
the two sets ofFsolv(ω) data are due to the higher noise level in
the spectrum for the 256-molecule system, which corresponds
to an average over 200 liquid configurations, while the 108-
molecule system data correspond to an average over 800
configurations. All the other influence spectra that we calculate
correspond to shorter ranged functions of solute-solvent
distances and should therefore show even weaker system size
dependence.
The INM influence spectra for the dipolar “Br2”-CH3CN

system were obtained by averaging over 800 configurations
separated by 0.8 ps. For the I2-CO2 system in liquid state we
used 1000 configurations separated by 0.6 ps, and for this system
at 320 K the influence spectra correspond to averages over 1200
configurations separated by 0.5 ps.
In addition to these INM predictions for friction spectra, the

MD-calculatedη(t) was also used to compute the frequency-
domain vibrational frictionηR(ω). The necessary transform was
evaluated by fitting the simulated data to a simple functional
form and then transforming the fit, as detailed in the Appendix.

IV. Results

A. Basic Features of Vibrational Friction in Molecular
Fluids. The first observation that one makes when confronting
the results on vibrational relaxation for specifically molecular
solvents is that, at least for frequencies under a few hundred
cm-1, molecular and atomic solvents are not all that dissimilar
in their abilities to absorb excess vibrational energy from a
solute.24,26,47 As we can see from our results for the frequency-
dependent vibrational friction in Figure 2, neither the addition
of orientational degrees of freedom nor the new-found distinc-

tions between nonpolar and dipolar solvents seem to change
the qualitative behavior of the friction. Both liquid CO2 and
liquid CH3CN, for example, have a sharp downturn at very low
frequencies followed by a more gradual decay at higher
frequencies. Indeed, the fact that there arequantitatiVe simi-
laries between vibrational population relaxation rates in these
two superficially very different liquids is strikingly reminiscent
of the close parallels between the ultrafast solvation processes
in these same systems.23

For our purposes here, the other noteworthy feature of these
plots is the extent to which the INM predictions tend to match
the molecular dynamics results. Though they are not as accurate
in the supercritical regime as they are in dense liquids, the
instantaneous-normal-mode results seem to be remarkably good
at capturing the overall scale and essential features of the
friction. They even succeed in predicting the roughly factor-
of-2 dimunition of the friction that one sees on going from dense
liquid to supercritical CO2. Of course, the limitations of this
level of theory should also be kept in mind. The inability of
this level of theory to cope with diffusion means that our INM

Figure 1. Solvation for a dipolar-diatomic solute dissolved in liquid
CH3CN illustrating the extent of finite-size effects in INM calculations
of relaxation in polar solvents. The labels on the two curves indicate
the number of molecules involved in both simulations (including the
one solute in each case). The differing amounts of noise reflect that
the fact that the curve for the smaller simulation represents an average
over four times as many liquid configurations as the curve for the larger
simulation.

Figure 2. Frequency dependence of vibrational friction felt by a
diatomic solute. Shown here are comparisons of the real part of the
frequency-domain friction computed by molecular dynamics (MD)
(from the Fourier transform of the fluctuations in force on the rigid
bond) with that computed from instantaneous-normal-mode theory
(INM). Starting at the top, the three panels correspond to a dipolar
solute dissolved in liquid CH3CN, I2 dissolved in liquid CO2, and I2
dissolved in supercritical CO2 at the critical density.
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friction is compelled to diverge at the very lowest frequencies
instead of simply exhibiting a maximum (and, in the supercritical
fluid case, not all that pronounced a maximum) at zero
frequency.26 Perhaps less obvious from the figure is that the
highest frequency behavior has difficulties as well. INM spectra
will always be essentially zero for frequencies outside the few
hundred cm-1 range allowed for the INM bands in these liquids.
The true molecular dynamics, in contrast, should predict the
existence of the tiny but finite relaxation rates that one sees
experimentally for modes some 10 times higher in frequency.7,48

This low-frequency irregularity is highlighted in the time-
domain version of these vibrational friction results, Figure 3.
The rapid Gaussian-like falloff of the friction in the first 200 fs
seems to be treated adequately, if not quantitatively, by INM
theory, at least for dense liquids. However the longer time
behavior is qualitatively incorrect; the INM curves slowly
(logarithmically) decay to-∞ instead of to 0, leading to
significant disparities by 0.5 ps. Clearly, it is well to remember
that INM theory is designed to work only at short times.25

Fortunately, most of the dynamics we wish to investigate in
this paper is governed by that first 200 fs, so we shall concentrate
our efforts there.
So what kinds of insights can one garner from an INM

analysis of vibrational relaxation in these fluids? The influence
spectrum for vibrational relaxation, eqs 2.1 and 2.3, hold a
variety of clues as to the underlying mechanisms. Consider,
for example, the question of which molecules act as the principal

agents of vibrational relaxation. Our previous studies in atomic
fluids led to the interesting but maybe not all that surprising
result that the vibrational population relaxation that one sees at
any one instant of time is largely triggered by one or two active
solvents.26,28 We might be able to understand such extreme
localization given the incredibly short range of the repulsive
force between atoms. But what should happen in a molecular
fluid with its much more complicated packing geometries and,
a fortiori, in a polar fluid, where much longer ranged forces
operate?49 From Figure 4, we see that there is little, if any,
mechanistic difference between molecular and atomic fluids at
this level. The INM formalism allows us to project out the
contributions of the single solvent molecule which most
effectively modulates the coupling to the vibrating diatomic
(Table 1).50 When the contributions of this “maximum” solvent
are added to those of the solute itself,51 we find that we can
account for more than three-fourths of the total influence
spectrum with just this binary motion: 76% for liquid CO2 and
77% for the (dipolar) liquid CH3CN. Moreover with liquid CO2,
84% of this binary part (a total of 64%) arises specifically from
the solute and the solvent nearest the solute (in a site-site
distance sense),52 a result strikingly similar to the total of 65%
seen in the atomic solvent case.
With the atomic fluid, the observation of this strongly binary

character for the instantaneous relaxation prompted us to ask
whether we were really validating the isolated-binary-collision
(IBC) theory for vibrational relaxation.29,53,54 It is easy enough
to look, as we did in the earlier work,26 at whether the vibrational

Figure 3. Time dependence of vibrational friction felt by a diatomic
solute. Molecular dynamics (MD) calculations are compared with those
of instantaneous-normal-mode (INM) theory, as in Figure 2, with the
INM and INMs curves corresponding to the results with and without
the inclusion of imaginary modes (respectively). The top and bottom
panels display the comparisons for I2 dissolved in liquid CO2 and for
I2 dissolved in supercritical CO2 at the critical density.

Figure 4. Vibrational friction influence spectra for I2 dissolved in liquid
CO2 and for a dipolar solute dissolved in liquid CH3CN. Each panel
compares the full influence spectrum with the corresponding projected
spectrum in which only the motion of the solute and the single most
strongly coupled solvent are included.
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friction we see scales with solvent density in the way that the
IBC model would predict. Figure 5 compares the vibrational
friction seen in supercritical CO2 at liquid densities (F ) 2.5
times the critical densityFc) with that at the critical density,
both at 320 K. The latter friction is noticeably smaller, but if
we multiply it by the ratio of local solvent densities in contact
with the I2 solute, Floc(F), for these two cases,Floc(2.5Fc)/
Floc(Fc) ) 3.04, we find that the molecular-dynamics-derived

frictions are indeed proportional to the local solvent density,
exactly as the IBC theory would have us believe the (hypotheti-
cal) collision rates would be.53 [Floc is defined here as
F gIO(r*), whereF is the bulk solvent density,gIO(r) is the site-
site radial distribution function for distancesr between solute I
site and solvent O sites, andr* ) 3.82 Å is the location of the
maximum of thegIO(r*) when F ) 2.5 Fc andT ) 320 K.]
By the same token, though, it is easy to see that there is no

need to invoke a gas-phase-like collision in order to explain
these results. The bottom panel of Figure 5 illustrates the fact
that the INM theoryswhich postulates that the solvent molecules
are moving harmonically in a field of force created by the
solvent as a wholesdisplays much the same density scaling.
Even the breakdown of IBC scaling at very low frequencies is
successfully mimicked by this harmonic perspective. What we
are left with, then, is that at all but the lowest vibrational
frequencies solute-solvent pair motionssbut not necessarily
isolated collisionssare what really stimulates vibrational popu-
lation relaxation in molecular liquids. Polar liquids, moreover,
are no different from nonpolar ones in this reliance on the
solvent dynamics in the immediate vicinity of the solute.
B. Relationship between Vibrational Relaxation and

Solvation. In the atomic-fluid case we suggested that this
crucial role played by binary dynamics is what is fundamentally
responsible for some remarkable similarities between vibrational
relaxation and solvation.28 The influence spectra of the two
processes, for example, turned out to be virtually identical. How
parallel is the situation in molecular fluids? We begin our
analysis by reminding ourselves how solvation dynamics itself
takes place in molecular solvents.
Solvation studies, unlike vibrational relaxation measurements,

allow us to separate two rather different roles played by the
intermolecular forces. Clearly the forces present in the solution
determine all of the liquid properties which are independent of
the particulars of the experiment: the equilibrium intermolecular
structure and the instantaneous normal modes of the liquid, for
example. They also determine the force along a vibrating bond
that governs how that vibrational energy is dissipated. However,
solvation experiments such as time-dependent fluorescence34,55

and transient hole burning56 actually probe the difference in
solute-solvent potentials for two different electronic states of
the solute, meaning that an alternative choice of electronic states
could in principle access different features of the dynamics of
a given liquid. With this possibility in mind, it was natural for
our previous solvation studies to try to distinguish the implica-
tions of different choices for the spectroscopic probe function,
theAwe spoke in section II, from the consequences of choosing
different kinds of solutions.23,57

What we discovered in this earlier work was that the
mechanismof solvation revealed by experiments in molecular
fluids was determined far more by the choice of spectroscopic
probe function than by the nature of the solution. Most notably,
the extent to which the prompt solvation derives from librational
motion (as opposed to relying on center-of-mass translation)
depends almost entirely on the symmetry of the probe function.
Electrostatic probes in particular (whether dipolar or quadru-
polar) are qualitatively different from dispersion and Lennard-
Jones probes, more or less independently of whether the solution
itself is polar.23

With the current study, we can see that vibrational relaxation
actually fits nicely into this same pattern. From the comparison
of the vibrational friction influence spectrum in liquid CO2 with
that associated with solvation in the same liquid (Figure 6), it
is clear that vibrational friction corresponds to an experimental

TABLE 1: Effects of Different Solvents on the Dynamics of
Vibrational Relaxationa

system
translational
dynamicsb (%)

binary
dynamicsc (%)

liquid CO2
d 62.6 75.8

supercritical CO2 (Fc)e 61.1 90.8
supercritical CO2 (2.5Fc)e 61.9 76.6
liquid CH3CNf 60.1 76.8

a Fraction of the prompt vibrational relaxation dynamics arising from
the particular kind of motion (as measured by the percentage of the
influence spectrum associated with the indicated type of dynamics).
b Percentage of the influence spectrum arising from center-of-mass
translation of the solute and the solvent molecules.c Percentage of the
influence spectrum arising from the dynamics of the solute and the
single most important solvent molecule.d I2 dissolved in CO2 at a
temperatureT ) 220 K. e I2 dissolved in CO2 at a temperatureT )
320 K and at solvent densities equal to and 2.5 times the critical density.
f Dipolar “Br2” dissolved in CH3CN at a temperatureT ) 293 K.

Figure 5. How the vibrational friction for an I2 solute dissolved in
CO2 at 320 K scales with solvent density. Shown in each panel is a
comparison betweenηR(ω), the real part of the frequency-domain
friction, at 2.5 times the critical density and a scaling factor times the
ηR(ω) computed right at the critical density. The scaling factor, 3.04,
is the ratio of the local solvent densities at the solute under the two
conditions. The two panels display the scaling observed with molecular-
dynamics-derived friction and with friction computed from INM theory.
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probe that is evidently in the same “universality class” as
Lennard-Jones solvation. The influence spectra for these two
processes are remarkably similar, a similarity that becomes
progressively less pronounced as one proceeds from a Lennard-
Jones solvation probe to a dispersion solvation probe to an
electrostatic solvation probe. Moreover, as with Lennard-Jones
solvation, we find that the clean separation into predominately
librational or translational mechanisms is all but absent with
vibrational relaxation. Projection of the vibrational influence
spectrum into rotational and translations parts (Table 1) reveals
that 62.6% of the prompt dynamics is translational, a figure
markedly different from the 80% and 30% seen in the dispersion
and electrostatic solvation in liquid CO2 (respectively), but rather
similar to the 55% observed with Lennard-Jones solvation in
the same liquid.23 Much the same behavior is found if we now
switch the solvent to the (superficially) very different liquid
CH3CN (Figure 7). Once again, the vibrational friction spectrum
ends up lying on top of the Lennard-Jones solvation spectrum,

but we see a distinction grow in as the solvation probe is
changed from Lennard-Jones to dispersive to electrostatic.
That this pattern of behavior actually results from the binary

component of the solution dyamics is now fairly easy to
demonstrate. If we project out the fraction of the solvation
influence spectrum resulting from the motion of the solute and
the single most important solvent, Table 2, we find not only
that Lennard-Jones solvation (in both polar and nonpolar
solvents) is dominated by binary dynamics to much the same
degree as vibrational friction is, but that the percentage of the

Figure 6. Relationship between vibrational relaxation and solvation
dynamics for an I2 solute dissolved in liquid CO2. We compare here
the normalized influence spectrum for vibrational relaxation (vib.) with
the normalized influence spectra for three different choices of solvation
(solv.) probe potentials: Lennard-Jones, dispersion, and electrostatic.
The normalized spectraD(ω) ) F(ω)/∫F(ω) dω are employed so as to
enable us to make meaningful comparisons between quantities with
different units and between quantities with the same units but very
different absolute magnitudes.

Figure 7. Relationship between vibrational relaxation and solvation
dynamics for a dipolar solute dissolved in liquid CH3CN. We compare
here the normalized influence spectrum for vibrational relaxation (vib.)
with the influence spectra for three different choices of solvation (solv.)
probe potentials: Lennard-Jones, dispersion, and electrostatic.

TABLE 2: Role of Binary Dynamics in Solute Relaxationa

solvationb (%)vibrational
relaxation (%) LJ dispersive electrostatic

liquid CO2
c 75.8 71.5 38.1 39.9

liquid CH3CNd 76.8 71.4 38.2 21.5

a Percentage of the influence spectrum arising from the dynamics
of the solute and the single most important solvent molecule.bSolvation
dynamics as probed by Lennard-Jones (LJ), dispersion forces (disper-
sive), or electrostatic interactions (electrostatic).c TemperatureT) 220
K. d TemperatureT ) 293 K.
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dynamics that is binary drops as one goes to solvation probes
less similar to vibrational friction. This preeminence of binary
motion in solvationsand its subsequent dimunition with in-
creasing range of the probe functionsis graphically illustrated
in Figures 8 and 9. Indeed, it does not take much beyond
comparing Figure 6 with Figure 8 and comparing Figure 7 with
Figure 9 to confirm that vibrational relaxation does resemble
solvation dynamics and that it does so precisely to the extent
to which these relaxation processes are being triggered by
solute-solvent pair motions.
C. Mechanistic Studies. In view of these results on the

striking spatial localization of vibrational relaxation, we really
need to ask what roles the various long-range and short-range
intermolecular forces at work in these liquids can be playing in
the relaxation. Certainly one might have imagined that the
electrostatic terms in the potential, which do, after all, contribute
the vast majority of the average potential energy, would end
up governing the dynamics as well. When added to the
observations of vibrational population lifetimes as small as
picoseconds that have been seen with ionic solutes,7,8 and to

the simulations of Whitnell, Wilson, and Hynes of the vibrational
relaxation of a dipolar solute in water,17 there would seem to
be little doubt that electrostatic forces can be vital to vibrational
population relaxation in polar systems.58 A crucial role for the
long-ranged forces involved in electrostatics, however, would
seem to belie the very locality we are reporting here.
The resolution to this conundrum is that electrostatics are

importantsto determining the equilibrium liquid structure
around the solutesbut they are not an important ingredient in
the prompt dynamics behind the relaxation in our, nonassociated,
solvents. We shall defer an analysis of the equilibrium aspects
of the problem to another paper,59 but it is simple enough to
subject the dynamics to a bit of mechanistic analysis. Suppose
we look once again at the pieces in the INM vibrational-friction
influence spectrum, but in a somewhat different fashion than
we have in the past. By separating out the different contribu-
tions to the force along the vibrating bond (theA in eqs 2.1
and 2.2) we can project out the role each kind of force plays
specifically in the dynamics. The immediate result (Figure 10)
is that we see that the purely Lennard-Jones portion of the
interaction really does account for almost all of the prompt

Figure 8. Solvation influence spectra for an I2 solute dissolved in liquid
CO2. Each panel compares the full influence spectrum (total) with the
corresponding projected spectrum in which only the motion of the solute
and the single most strongly coupled solvent are included (max.). The
three panels reflect three different choices of solvation probe poten-
tials: Lennard-Jones, dispersion, and electrostatic.

Figure 9. Solvation influence spectra for a dipolar solute dissolved in
liquid CH3CN. Each panel compares the full influence spectrum (total)
with the corresponding projected spectrum in which only the motion
of the solute and the single most strongly coupled solvent are included
(max.). The three panels reflect three different choices of solvation probe
potentials: Lennard-Jones, dispersion, and electrostatic.
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dynamics, even with a dipolar solvent such as CH3CN and a
dipolar solute. Moreover, even the residual contribution that
electrostatics seems to make is seen to be not so much a
reflection of its direct role in the dynamics as it is an indirect
effect that relies on a cross coupling to the Lennard-Jones
contribution.
It is worth pointing out that we can also try to examine the

time-dependent friction directly, without relying on INM theory,
as has already been done in the literature17,60 (Figure 11). A
standard, and apparently quite accurate, approximation to the
vibrational friction is that it is simply related to the autocorre-
lation function of the fluctuations of the solvent force on the
rigid bond.6,17

If we decompose these force fluctuationsδF into their Lennard-
Jones and electrostatic pieces, then eq 4.1 tells us that the friction
will automatically split into Lennard-Jones, electrostatic, and
cross-correlated components.17 A plot showing these compo-

nents also seems to reveal the extent to which Lennard-Jones
forces dominate the vibrational relaxation. However, what is
less clear is whether one is looking at equilibrium or dynamical
effects in this graph. In fact, since almost all of the distinction
between Lennard Jones and electrostatic contributions seems
to occur att ) 0, that is for〈(δF)2〉, we might have guessed the
preeminence of Lennard-Jones components was largely astatic
effect.
A more illuminating approach to the elucidation of mecha-

nisms is that detailed in section II.B, where we suggest working
(at this same level of approximation) with the friction-velocity,

rather than the friction itself. Decomposing the exact molecular
dynamics in this way in our nonpolar liquid solvent example
(Figure 12) provides a number of useful lessons. For one thing,
we can confirm our previous comment that the dynamics behind
vibrational friction is dominated neither by center-of-mass

Figure 10. Contributions of different intermolecular forces to the
vibrational friction influence spectrum. Each panel compares the full
influence spectrum (total) with spectra in which the components arising
from solely Lennard-Jones forces (LJ), solely electrostatic forces (elec.),
and cross correlations between the two (LJ-elec.) have been projected
out. From the top, the three panels correspond to a dipolar solute
dissolved in liquid CH3CN, I2 dissolved in liquid CO2, and I2 dissolved
in supercritical CO2.

η(t) ) â〈δF(0) ∂F(t)〉 (4.1)

Figure 11. Contributions of different intermolecular forces to the time
dependence of the vibrational friction. Each panel compares the friction
derived from molecular dynamics (from the autocorrelation function
of the force fluctuations felt by the rigid diatomic) with the components
arising from solely Lennard-Jones forces (LJ), solely electrostatic forces
(elec.), and cross correlations between the two (LJ-elec.). As with Figure
10, the three panels correspond, in descending order, to a dipolar solute
dissolved in liquid CH3CN, I2 dissolved in liquid CO2, and I2 dissolved
in supercritical CO2.

GFF(t) ) 〈Ḟ(0) Ḟ(t)〉 (4.2)
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translation nor by libration. The most interesting lesson, though,
stems from the comparison between Lennard-Jones solvation
and vibrational friction. The quantitative similarity between the
two kinds of dynamicssboth in terms of the behavior of the
overall time correlation functions and their individual mechan-
ical componentssmakes abundantly clear the nonelectrostatic
origins of thedynamicsbehind the two kinds of relaxation
processes.61 Were we to halve or double the partial charges in
our intermolecular forces, as Whitnell et al. have done in their
aqueous example,17 we would no doubt find corresponding
changes in the overall magnitude of the vibrational friction
arising from the modifications the revised electrostatic forces
induce in the equilibrium liquid structure,59 but the dynamical
mechanism, we would predict, would remain largely as it is.
As we noted in section II.B, we can also generalize the

standard test for the validity of IBC theoryl7,29,53,54with the aid
of this same kind of analysis. Instead of just decomposing the
friction into binary and nonbinary parts, we can make a formal
separation of the friction velocity, the dynamics, into binary
and ternary components, Figures 13 and 14, by using eq 2.14.
From the friction alone we would have been tempted to conclude
that while the motion of the solute and a single solvent at a
time might suffice to describe nondipolar systems such as I2 in
CO2, for more polar situations such partitioning would no longer
be useful. Yet when we extract the binary part of the friction
velocity, we find that almostall of the dynamics for the first
0.5 ps is governed by the solute-plus-single-solvent-molecule
component, even for a dipolar system. The ternary terms are
certainly present in the friction, but they are evidently so slowly
varying that their impact on the mechanism of vibrational
relaxation is hardly felt.
All of this analysis to this point has been based on an average

view of solute relaxation. The real advantage of INM ap-
proaches, however, is that they let us take an instantaneous

perspective.28 Thus the final and most critical piece of
mechanistic analysis we would like to present is one that looks
specifically at individual liquid configurations, Figure 15. In
this figure we have returned yet again to our dipolar system
and looked, as we did in Figure 7, at the influence spectra for
the separate cases of vibrational friction, solvation probed by
Lennard-Jones forces, and solvation probed by electrostatic
forces. Without the benefit of configurational averaging, the
figures seem to be an impenetrable array of random spikes, and
since each spike represents the contribution of a different
instantaneous normal mode, it would seem unlikely that any
simple mechanistic picture would suffice to explain the data.
However, a careful look at the statistics of these figures says
that there is indeed a simple story to tell.
Suppose we consider first the question of how many solvent

molecules are participating in the relaxation. One way to think
about this problem is to note that for any given configuration,
the total coupling is measured by the integral over the
instantaneous influence spectrum, or equivalently, by the sum
over all the modes of coupling constants squared:

But from eq 2.2 and the orthonormality of the INM eigenvectors,
we know that this sum can be written as a sum of derivatives
of the probe function with respect to the coordinates of each
individual molecule,22

Figure 12. Relationship between the dynamics of vibrational relaxation and of solvation for an I2 solute dissolved in liquid CO2. The three panels
show the vibrational friction-velocity correlation function (upper left), the solvation-velocity correlation function for a Lennard-Jones probe potential
(upper right), and a comparison between normalized versions of the two (lower center). Each of the top two panels also shows the decomposition
of the respective correlation functions (sum) into components arising from center-of-mass translation (trans.), libration (rot.), and translation-
libration cross correlations (cross).

C2 )∫FR(ω) dω ) ∑
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with mjµ the mass appropriate to each coordinateµ of molecule
j. So what we would really like to know is how many of the
N solvent molecules it typically takes to comprise a significant
fraction of this total coupling sum. A selection of eight different
liquid configurations withN ) 107 shows that anywhere from
as few as four to as many as 17 different solvent molecules can
contribute at the 1% level. Themediannumber of contributing
molecules thoughsthe average number of solvent molecules it
takes to recover 50% of the total couplingsis far more
informative. As we can see from Table 3, vibrational population
relaxation and Lennard-Jones solvation are quite similar mecha-
nistically in that they are both typically triggered by the motion
of a single solvent. Dispersive solvation usually takes closer
to three and electrostatic solvation on the order of five solvent
molecules, but even these numbers are remarkably low con-
sidering that in these systems the first solvation shell alone
contains about 15 solvents.22,23

Given that at most a few molecules are playing the key roles
in the solute relaxation from any one liquid configuration, the
next question to ask is just what motions these molecules are
undergoing. Here is where the complexities of the remainder
of the liquid enter the picture, for the INM answer to the

question is that these critical molecules are performing whatever
motions the multitude of modes they are involved in tell them
to, and each individual mode can be quite collective. Still there
is a certain amount of simplicity awaiting us even here. Our
study of atomic solvents revealed that regardless of what most
of a mode’s dynamics entailed, the net effect of the active modes
was merely to modulate the distance between the solute and a
key solvent or two.28 We were therefore able to encapsulate
most of the high-frequency aspects of the relaxation in terms
of a single two-molecule effective harmonic mode for each
configuration. It seems not unreasonable to expect that a similar
scenario will govern relaxation in molecular fluids.
But, even in advance of any such study for our molecular

system, we can point to yet another noteworthy simplification.
Figure 15 makes it appear that a sizeable (and highly variable
number) of instantaneous normal modes are contributing to the
instantaneous relaxation. But, suppose we look (Table 3) at
the median number of contributing modes, defined (by analogy
with the median number of contributing solvents) to be the
average number required to achieve 50% of the total coupling
in eq 4.3. What we find is that only a “mesoscopic” number
of modes really contribute. That is, instead of seeing participa-
tion from some macroscopic fraction of the 540 modes present
in our 108 molecule system (or some microscopic number
corresponding to the 1-5 key solvents), we find intermediate

Figure 13. Contributions of simultaneous motion by two or more
molecules to the vibrational relaxation of I2 dissolved in liquid CO2.
Each panel displays a measure of the vibrational friction derived directly
from molecular dynamics (as in Figure 11), along with the portions
stemming from the binary (solute-plus-one-other-solvent-at-a-time) and
ternary (solute-plus-two-other-solvents-at-a-time) components. The top
panel exhibits the time dependence of the total friction, along with its
binary/ternary decomposition, whereas the bottom panel shows the
friction-velocity correlation function and its binary/ternary decomposi-
tion.

Figure 14. Contributions of simultaneous motion by two or more
molecules to the vibrational relaxation of a dipolar solute dissolved in
liquid CH3CN. As with Figure 13, the two panels show the solute-
plus-single-solvent (binary) and solute-plus-two-solvents (ternary)
components of the time-domain friction and of the friction-velocity
correlation function, both obtained directly from molecular dynamics.
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values, on the order of (540)1/2.62 Though this kind of result is
strongly reminiscent of some sort of fluctuation phenomenon,
its exact origins are unclear. It should prove interesting to learn
just how the solute selects out its special modes.

V. Concluding Remarks

Since we have now been able to perform the same level of
short-time analysis of vibrational population relaxation in

molecular liquids that we had undertaken for solvation dynamics
in the same liquids, we should certainly be asking ourselves
what broad, general insights we might have gained into how
solute relaxation occurs. Without question, our principal finding
is that the mechanism governing relaxation in these systems
depends far more on the features of the dynamics being probed
(“the spectroscopic probe function”) than on the character of
the solvent. In particular, in this paper we looked not only at
the probe appropriate to vibrational relaxation (the force on a
vibrating bond), but at probes germane to solvation (the
Lennard-Jones, dispersive, and electrostatic parts of the solute-
solvent potentials), and we did so in both dipolar and nondipolar
solvents and in both sub- and supercritical solvents. The end
result was clear: it was the probe that was mechanism
determining.
The basic mechanism of vibrational population relaxation, it

seems, is almost identical to that seen in Lennard-Jones probes
of solvation. The large fraction of the prompt dynamics
controlled by the joint motion of the solute and a single solvent
and the nearly statistical fraction driven by center-of-mass
translation rather than libration are remarkably similar with these
two probes and quite distinct from that seen with longer range
solvation probes. When we proceed to the single-liquid-
configuration level, we find the similarity extends there as
well: the median numbers of contributing solvents and con-

Figure 15. Instantaneous influence spectra for a dipolar solute dissolved in liquid CH3CN. Each of the three rows shows, for a distinct liquid
configuration, three different normalized distributions of instantaneous-normal-mode coupling strengths (cR)2 for modesR at the indicated frequencies.
The three columns, from left to right, distinguish the instantaneous vibrational friction spectrum, the instantaneous solvation spectrum arisingfrom
a Lennard-Jones probe potential, and the instantaneous solvation spectrum arising from an electrostatic probe potential. For visual clarity, the
coupling strengths are portrayed by spikes with zero width.

TABLE 3: Instantaneous Contributions to Solute
Relaxationa

solvationbvibrational
relaxation LJ dispersive electrostatic

number of solvents 1.38 1.50 2.75 4.63
number of modesc 19.8 15.1 23.4 33.0

aMedian numbers of solvents and median numbers of instantaneous
normal modes contributing to the relaxation taking place in a given
liquid configuration. All data shown are derived from a simulation of
liquid CH3CN involving 107 solvent molecules and a single diatomic
solute. The results reported here are averaged over eight configurations
separated in time by 16 ps.b Solvation dynamics as probed by Lennard
Jones (LJ), dispersion forces (dispersive), or electrostatic interactions
(electrostatic).c By way of comparison, there are 540 total modes in
these systems. Note that the square root of this number of modes is
23.2.
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tributing instantaneous normal modes show much the same
parallelism between the two short-ranged probes. Even the
precise shapes of the average influence spectra for these two
kinds of experiments serve to emphasize this striking connection.
The fact that the influence spectra are so similar for the short-
ranged probes points out that precisely the same modes of the
solutionswith precisely the same special weightingssare being
called upon to carry out the relaxation. Conversely, as the probe
becomes longer and longer ranged, it is apparent that a rather
different set of weightings comes into play. By the time we
turn to electrostatic probes, the underlying modes are contribut-
ing far more equally, making the influence spectrum closer to
the basic density of states of the liquid itself.
Of course, of equal note to this pronounced dependence on

the specific probe is the lack of dependence of vibrational
relaxation mechanisms on the specific solvent. Regardless of
the system, all of our work shows a distinctly binary flavor to
the onset of vibrational relaxation. From a macroscopic
perspective, the isolated-binary-collision-like scaling of relax-
ation rates with local density has long been appreciated,53 but
we can now supplement that with more microscopic state-
ments: It is evidently just the prompt dynamics that is limited
to the solute and a single solvent; at longer times a more
collective behavior does take over. Yet, at the short times that
control vibrational relaxation, it is equally clear that it takes
the motions of typically no more than one or two nearby solvent
molecules to trigger vibrational relaxation, even with a dipolar
solvent. Consistent with this observation, it is the shortest range
parts of the intermolecular interactionsthe Lennard-Jones terms
in the standard representations of the potentialsthat end up
governing the relaxation, even with a dipolar solvent. While
Whitnell et al. seemed to find otherwise in their study of
vibrational relaxation in water,17 it could very well be that their
example was a rather special case. In looking at vibrational
relaxation in the vicinity of 650 cm-1 they were focusing on
relaxation caused entirely by coupling to water’s hydrogen-bond
dominated librational modes.63 Since both the water structure
around their solute and their model of hydrogen bonding are
strongly intertwined with the electrostatic forces, their result is
perhaps not as opposed to ours as it might seem.58

Our efforts, it should be pointed out, have in some ways been
quite limited. By concentrating only on solutes with a single
internal vibrational mode, and on rigid models for our solvents,
we have limited our energy transfer studies to V-T and V-R
processes. We have therefore excluded the interesting pos-
sibilities that can arise when the solvent can assist in intramo-
lecular vibrational relaxation14-16 or can facilitate relaxation by
absorbing the solute’s vibrational energy into its own internal
vibrations.14,16 Just what the mechanisms are behind these more
involved processes (which are so crucial to vibrational relaxation
of any molecule larger than a diatomic) we look forward to
learning. However, it is worth noting that with the aid of the
findings in this paper we have now learned enough to overcome
one of the other limitations of this work, that of the inability of
a (linearized) instantaneous-normal-mode theory to accomodate
solute vibrations with frequencies higher than those encom-
passed in the solvent's own density of states.26 The central role
of binary motions, it turns out, tells us how to include the
necessary anharmonic effects into our analysis. We shall use
this insight in a subsequent paper to describe high-frequency
vibrational relaxation.64
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Appendix

To perform numerical Fourier transforms of the vibrational
friction we compute from molecular dynamics, we find it useful
to fit the friction to an analytical function. In this Appendix
we describe this fit.
We represent the friction normalized to its zero time value

with the expression

This functional form satisfies the requirement thatη̆(0) ) 0, it
has the correct long-time behavior, and it seems to provide an
excellent fit for our systems. We attribute no particular physical
significance to the five parameters, though.
With this form it is a simple matter to take the cosine

transform, enabling us to writeηR(ω), the real part of the
frequency domain friction, from eq 2.8.

whereD(x) is Dawson’s integral,

a special function that can be found in most numerical
algorithms packages.
The parameters we found for this form for our systems are

reported in Table 4.

TABLE 4: Fits to Simulated Vibrational Frictions a

η(0)b A1 A2 R1/ps-2 R2/ps-1 bc

CO2, 220 Kd 0.617 0.627 0.208 51.2 1.56 22.9
CO2, 320 K,Fce 0.331 0.525 0.108 105 5.35 24.3
CO2, 320 K, 2.5Fce 1.20 0.734 0.194 76.3 1.03 28.2
CH3CN, 293 Kf 1.51 0.709 0.125 136 2.30 33.3

a The parameters used to fit the vibrational friction computed from
molecular dynamics to the form described in the Appendix.b The static
friction in units of kg s-2. c In units of radians ps-1. d I2 dissolved in
liquid CO2. e I2 dissolved in supercritical CO2. The notationFc refers
to the critical density.f Dipolar “Br2” dissolved in liquid CH3CN.
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